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Using the concept of derivatives in multivalued directions, differential inequalities are presented which express in infinitesimal 

form the defining stability properties of the value function of a differential game with hereditary information [l-7]. As a corollary, 

stability criteria are obtained for piecewise ci-smooth functionals [7, 51 and for envelopes of a family of ci-smooth functionals. 
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Relying on the development of approaches proposed previously [9-121 for control problems for ordinary 
differential systems, this paper continues the investigations of [7, 131, which were devoted to control 
problems complicated by aftereffect and formalized as a differential game with hereditary 
information. It was shown in [7] that the value functional of this game is a generalized, in fact minimax, 
solution of a Cauchy problem with a condition at the right-hand end for a Hamilton-Jacobi equation 
with coinvariant derivatives (ci-derivatives) [8, 131. Minimax solutions were defined in [7, 131 in terms 
of non-local properties of stability with respect to characteristic differential inclusions with aftereffect. 
This definition agrees with the intuitive meaning of the problem. It is convenient, for example, in proving 
the appropriate existence, uniqueness and well-posedness theorems [ 13). However, in specific problems, 
it is not infrequently difficult to verify that the required stability properties hold for a solution found 
through auxiliary constructions. The differential inequalities derived below for the derivatives of the 
value functional in multivalued directions, which are essentially equivalent to the aforementioned stability 
properties, are frequently easier to verify - this is the case for piecewise ci-smooth functionals and for 
envelopes of a family of ci-smooth functionals. 

1. COINVARIANT DERIVATIVES AND DERIVATIVES IN 
MULTIVALUED DIRECTIONS 

We will use the notation C([t,, rz], R”), where tl, t2 E R, tl G t2, for the space of real functions 
x[.] = x[t,[.][t2] : [tl, t2] I-+ R”, where x[t] denotes the value of a function x[.] at a point t E [tl, t2] and 
x[t’[.]t”] its restriction to [t’, t”] C [ti, tz]. Let r* to, T E R, t, G to < T, C, = C([t,, T], R”) and let G be 
the set of pairsg = (t,~[t,[.]t]) such that t E [t,,, T],x[r,[.]r] E C([t,, r], R”). We define a distance function 
on G as follows: 

I%, g2) = max (p*(gl, g2>, p*(g2, go )I (1.1) 

where 

g1 = (fl . xc’)[t*[~lt, I) E G, g2 = (229 .+2)[r*[~l~21) E G 

p*(gj+l q g2-; 1 = max min 
qa,+, 

max(j 5 -q 1, I( 
1. I, qsr2-, 

x"+"[5]-~'2-"[rl]II), i = 0, 1 

Throughout this paper, ]I.]] will denote the Euclidean norm of a vector. 
Everywhere below, continuity properties of the quantities being considered with respect to the 

argument g = (t, x[t*[.]t]) will be understood with respect to variation of the argument as estimated by 
the function p. 

+Prikl. Mot. M>kh. Vol. 65, No. 3, pp. 375-384. 2001 

361 



362 N. Yu. Lukoyanov 

Consider a functional 

Fixg = (t, x[t.[.]t]) E G, t < T. Let Lip (g) denote the set of functions y[.] E C, which are identical 
withx[t,[.]t] in [t,, t], each of which satisfies a Lipschitz condition in [t, T] (each with its “own” Lipschitz 
constant). We shall say [7,8, 131 that a functional cp is coinvariantly differentiable at a point g relative 
to Lip (g) (ci-differentiable at g) if a number d,cp(g) and an n-vector Vcp(g) exist such that, for any function 
Ybl E Lip Cd, 

(p(f + 6, YP*[~P + 61) - WV ~MM) = (1.2) 

= +p(g) 6 + Pcp(g>, y[r + 61 -.M) + q+@9 6 E PI T- 4 

where 0~1. (6) depends on the choice ofy[.] E Lip (g), 0~1.1(6)/6 + 0 as 6 + +O. 
Throug lh out, (.,.) denotes the scalar product of vectors. 
The quantities &cpCg) and Vcp(g) will be called, respectively, the ci-derivative with respect to r and the 

ci-gradient of the functional cp at the point g. A functional cp is said to be ci-differentiable if it is ci- 
differentiable at every point g = (t, x[t,[.]r]) E G, c < T. A continuous ci-differentiable functional cp is 
said to be ci-smooth. 

Note that the class of ci-smooth functionals is quite large. For example, many functionals which can 
be represented in integral form are ci-smooth; moreover, in most cases the ci-derivatives may be 
calculated by standard means, relying on the rules for the differentiation of ordinary functions of a finite- 
dimensional argument. More detailed information on the properties, methods of calculation and some 
applications of ci-derivatives of functionals can be found in [8]. 

Let g = (t, x[t.]t]) E G, r < T, y[.] E Lip (g), E > 0, and let F C R” be a non-empty convex compact 
set. The symbol [FjE will denote the closed s-neighbourhood of the set F in R”. Define 

(1.3) 

R(g, F, E) = (y[.] E Lip(g) : dy[~]l& E [F]’ a.e. z E [r, T]} (I-4) 

d+cp(g 1 F) = lim sup 
EL0 Y[~lEi&!. F. E) 

J’cp(g I Yi.1) (l-5) 

The quantities d-&g ]~[a]) and d’cpCg ]~[a]) are respectively the lower and upper right derived numbers 
of the functional cp at the point g along the function y[.]. The quantities d-tp(g 1 F) and d+cp(g IF) are 
known respectively as the lower and upper (right) derivatives of the functional cp at the point g with 
respect to the multivalued direction F. Note that these derivatives may also take the improper values 
--oo and +m. 

propoSition 1. If the functional cp : G k R is ci-differentiable at the point g, then for any convex compact 
set F C R” 

d-W I 0 = +t’W + yj;(vcp(gh f> 

d+cp(g I F) = QNg) + y$VcpW. f) 

(l-6) 

Proof. On the one hand, noting (1.2), (1.3) and using the Mean-Value Theorem for vector-valued functions (see, 
e.g., [14, p. 5]), we see that for any E > 0 andy(.] E Q(g, F, E) 
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and therefore, by (1.5), we have 

d-MI? I 0 3 a,cpw + yyw~). f) 

On the other hand, since for any E > 0 and f E F the function 

Y/[*l= (y,bl= x[ll. T E it.9 11; Yf[~l=xI~l+f(T-r), rEO,Tll 

is in the set SZ(g, F, E), we deduce, again using (1.2), that 

d-cp(g I 0 s jn~a-vtg I yfl.1) = &cP(g)+ ~i;(Vcp(gh f> 
E E 

(1.7) 

(1.8) 

(1.9) 

Inequalities (1.7) and (1.9) prove the first of equalities (1.6). The verification of the second equality is 
similar. 

Let 

q(g) = m$ 7~; wii (g). g = (t. .dUl4) E G 

where vii : G k R are ci-smooth functionals (i E Z, j E .Z), with Z and .Z finite sets. 
A functional cp: G k R, representable in the form (l.lO), will be called piecewise 

Put 

oo(g, 5, z) = min max [4v,<g)C + (Vv&). z)l 
ido jeJ0tg.i) 

(1.10) 

ci-smooth. 

(1.11) 

(1.12) 

Proposition 2. Let q : G k R be a piecewise ci-smooth functional (1.10). Then for any convex compact 
setFCR” 

d-cp(g I F) = y$q,(g+ 1, fh d+cp(g I F) = 7;; w,(g. 1, f) (1.13) 

g = 0. xidM) E G. t<T 

Proof. Let g = (r,x[t.[.]t)) E G, t c T, E > 0, y[.] E Q(g, F, E). Since the functionals vi, are continuous and the 
sets I and J are finite, a number So > 0 exists such that, for all S E (0, So) and i E f, 

lo0 + 6, tiI,klI + 61) c lo(g). JOU + 6, u[l*klf + 61, i) c J&L i) 

Taking this into consideration in (l.lO), (1.11) and using the ci-differentiability of the functions vvii, we obtain 

CPQ) = Vi&I)* i E l&9. j E J&h i) 

cp(f+S,y[r,[.]f+S])-cp(g)= min ia,o(g) jcmo; i,[vij(f+brr*[~?+61)- v&91 = 

= min max ~~,vi,~g)S+~~v~~gXy[r+6l-x[rl)+0~.](6;i,j)l. 
i~1of.s) jeJo(g.4 

6~(0.6~1 

Since I and J are finite, a function 0;[.1(8) exists such that lori.l(S: i, j)l s oil.l(S) for all i E I&), 
j E .I&, i) and S E (0, S,], o;[.l(S)/S + 0 as 6 1 0. We thus conclude that for any g = (t, x[t.[.]t]) E G, 
t c T, E > 0, y[.] E sZ(g, F, E) and S E (0, T - t) there is an equality 

cp(t + 6. &.[.lr + 61) - cp(g) = w!, 6. YD + sl -44) + oy(.]m (1.14) 

Equalities (1.13) follow from (1.3)-(1.5) and (1.12), (1.14) by arguments similar to those adduced above when 
proving Proposition 1. 
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cp(g) = yy [Y-Q. o+ VOl, g = 09 -dt*[*ltl) E G (1.15) 

where L C R”’ is a non-empty compact set, v: L k R is an upper semicontinuous function, 
~(g, 1) : G x : L k R is a continuous functional (which is moreover equicontinuous with respect to 
g as a function of 1 E L) which is ci-differentiable for any fixed 1 E L, its ci-derivatives &w(g, I) E R 
and Vv(g, I) E R” are continuous with respect to 1 on L for any fixed g = (I, x[t,[.]t]) E G, t < T, in 
such a way that the “o-small” term in the appropriate equality of type (1.2) is independent of the choive 
of1 EL. 

Put 

(1.17) 

The set Lo(g) is non-empty and compact for anyg E G. 

Proposition 3. Suppose the functional cp: G k R is representable in the form (1.15). Then for any 
convex compact subset F C R” 

Kcp(g I F) = 7;; ho@ f), d’cp(g I F) = y; hO(g. f) (1.18) 

g = (t, x[t,[.]r]) E G, I < T 

Proof. We will prove the first equality of (1.18). Let g = (t, x[t,[.]t]) E G, t =Z T, E > 0, 
y[.] E &2(g, F, E) and let Sj 1 0 (j = 1, 2, . . .) be a sequence such that 

a-$Q I Jf.1) = lim [$3[ + 6j 7 Yf&[.lt + 6 j I)- (p(g)161’ (1.19) 
j-w 

Put& = (y[t + S,] -~[t])g,T’ (j = 1,2, . . .). Sincey[.] E Ng, F, E) (see (1.4)) and F C R” is convex and compact, 
it follows from tfie Mean-Value Theorem for vector-valued functions that& E [F]‘; we may assume, without affecting 
the generality of the subsequent arguments, thatfj +f* E [FJ” as j -+ 03. Let 1’ E L’(g). Then we conclude from 
(1.19), taking (1.15) (1.16) and the ci-differentiability of the functional v(g, lo) into account, that 

These relations hold for any 1’ E Lo(g). Therefore, taking (1.17) into account and noting also thatf. E [fl”, we 
obtain 

These inequalities hold for any E > 0 andy[.] E sZ(g, F, E), so that, by (1.5) we have 

d-cp(g I F) 3 ?$A’@. S) 
E 

On the other hand, letf E F, yf[.] (see (1.8)) and the sequence 6i 10 (i = 1, 2, . . .) be such that 

(1.20) 

Xcp(gIyf[.l)= lim[cp(~+6;.Yf[~*[~lf+~iI)-cp(~)lG~’ (1.21) 
i-m 

Take b E L”(t + 6i,fi [t*[.]t + Si]) (i = 1, 2, . . .). W e now deduce from (1.21) again taking (l.lS), (1.16) and the 
properties of the functional v(g, f) into account, as well as (1.8) that 
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It follows from (1.1) and (1.8) that p((t + G;,yj [t.[.]t + 6i])g) + 0 as i + m. Therefore, by the aforementioned 
properties of L, y(g, f) and v(l), it can be shown that a convergent subsequence {I,,) of the sequence {Ii} exists 
such that fY -+ 1s E Lo(g) as i’ -+ m . The following inequalities thus follow from (1.17) and (1.22) 

Fcp(g I Yff.1) s a,wg* ~,)+w+4~. Ioh f> =s kOb. f) 

and they hold for any f E F. Sinceyf[.] E Q(g, F, E) for all E > 0 and f E F, we conclude, in accordance with (1.5), 
that 

(1.23) 

Inequalities (1.20) and (1.23) prove the first of equalities (1.18). The verification of the second proceeds along 
the same lines. with self-evident modifications. 

2. DIFFERENTIAL INEQUALITIES FOR THE VALUE FUNCTIONAL 

Consider a differential game with hereditary information [l-7] for a system with aftereffect 

dr[fl/df =f(t, x[t*[$l, u, a, t,cto6tsT 

XE R”. UE UCR’. VEVCR~ (2.1) 

the performance index of the motion being 

Y= cW~o[~lTl) (2.2) 

Here x is the phase vector, L( and u are the controls of the first and second players, respectively, t,, to 
and Tare given times (to < T), U and V are known compact sets, x[t.[.]t] E C([t,, t], R” is the motion 
history up to time t, the functional o : C([t,, T], R”) k R is continuous, and the function f: G x U x 
I’ k R” satisfies the following conditions 

(lr) it is continuous; 
(2f) for any compact set D C C. a number A > 0 exists such that, for all 1 E [to, T], u E 17, u E V, 

and x’[.] E D, ~“[a] E D, the following estimate (the Lipschitz condition with respect to x[t*[-It) holds 

II f(f, x’[r*[.lrl, u, IJ ) - f0, x”[L[.ltl. u* v ) II s A, yx, II XI71 - x”[Tl II 
l 

ho%! 
a number x > 0 exists such that, for all (t, x[t*[.]t], u, u) E G x U x V, the following inequality 

II f0. x[t.[.ltl, 4u ) II s x(1+ ,y, II 471 II) .-- 

(45) for any (t,x[t,[-It]) E G and s E R”, the following equality (the saddle-point condition in a small 
game [ 1, 5-71) holds 

Conditions (1f)-(3f) guarantee the existence of a unique solution (motion) x[t.[.)TJ, extendible up 
to T, of system (2.1) for any initial state go = (to, x’[t,[.]t 1) E G, t” < T (i.e., x[r] = x [r], t, < r < t ) 
and Borel-measurable realizations u = u[t] E U and u = u[t] E V, t” s t c T. The addition of condition 
(41) guarantees that the game is solvable in pure strategies. 

The first player’s aim is to minimize the index y (2.2) and that of the second is to maximize y. By 
control strategies of the first and second player we mean arbitrary functions u(t, x[t*[.]t]) E U and 
u(t,x[t.[.]t]) E L’, respectively, where (t,x[t.[.]t]) E G, t E [t”, r]. Motion takes place on the basis of a 
selected strategy in a discrete time scheme. A detailed formalization of the game (2.1) (2.2) was given 
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in [7]. It was proved there that the game has a value - a functional from G to R which is the unique 
minimax [13] solution of a Cauchy problem for the following Hamilton-Jacobi equation with ci- 
derivatives 

+4’(g)+ f&z, b’(g)) = 0, g = 0, x[f,[.lrl) E G, r c T (2.3) 

where 

with the following condition at the right-hand end of the interval 

cp(T, .dr,[V’l) = o(W.lrl>, 4.b c* (2.5) 

The optimal strategies u”(t, x[t.[.]t]) and LJ’(Z, x[t,[.]t]) that make up the saddle point of the game are 
constructed as extremals for this solution. 

Let P and Q be certain non-empty sets. Let us consider multivalued mappings 

G X Q 3 (g = 0. x[~,[~l~lh 9) I+ F*(g, 9) c R” 

G X /J 3 (g = 0, x[~,[~l~lh P) t-+ F,(g, p) c R” 

satisfying the following conditions 
(lK) for any Cg,p, q) E G x P x Q, the sets F’Cg, q) and F&p) are non-empty convex compact sets 

in R”; a number a > 0 exists such that 

max (II f II I f E F*O. .d~.[~l~l~ 4)u F,(t, xM+ltl, p)) Q a(l+ ,:t3~, 11 X[T] 11) 
l 

0. xP,[~l~l, p, Q) E G x P x Q 

(2K) for anyp E P and q E Q the multivalued mappings G 3 g I+ F’(g, q) and G 3 g k F&p) are 
continuous in the Hausdorff metric; 

(3K) for anyg E G and s E R”, 

sup min 
+Q feF’(g.9) 

(s,f)= H(g,s)= inf max 
PEP fe R L?.P) 

(~,f) 

We will call the pairs {Q, F*(s)} and {P, F.(.)} upper and lower characteristic complexes (CCs), 
respectively. The set of all upper CCs will be denoted by Kf(w, and that of all lower CCs by Kf(H). 
By virtue of (1f)-(4f) and (2.4), conditions (1K)-(3K) will hold, for example, when 

Q= V, F’(& 9) = cm& u, 9) lu E u t 

P= u, F*(gt p) = d_tlg, p, 4 Iv E VI (2.6) 

where co F is the convex hull of the set F in R”, so that K:(H) f 0 and K&Y) f 0. 
Let 

tQv F’(9) E $W), IP. Ct.11 E Ki(H) 

Theorem 1. A necessary and sufficient condition for a functional cp : G I+ R to be the value functional 
of a differential game (2.1), (2.2) with hereditary information is that it should be continuous and satisfy 
the boundary condition (2.5) and the following differential inequalities 

supd-cp(g I F*(g, 4)) s 0, g = 0, x[~.[~Pl) E G. f < T (2.7) 
9eQ 

inf d+cp(g I F, (g, p)) 2 0, g = (t, x[rJ~ld) E G, t < T (2.8) 
PEP 

Proof. We establish a correspondence between characteristic complexes IQ, F*(.)l and {P, F*(.)l and 
characteristic differential inclusions with aftereffect 
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dr[tl/dr E F’o, x[t*[~ltl, 4) (2.9) 

aJx[tl/dr E F,(t, x[t*[~lrl, PI (2.10) 

For fixed go = (to, x’[t.[.]t’]) E G, q E Q andp E P, let x’(g’, qlF’(.)) andX.(g’,p IF,(.)) denote the 
sets of solutions of characteristic differential inclusions (2.9) and (2.10 

& go (that is, the sets of functions of C, that are identical withxO[r,[.]tO] in [t,, t 
respectively, issuing from 

in [f’, T], and satisfy inclusions (2.9) and (2.10) 
1, are absolutely continuous 

respectively, for almost all t E [to, T]). By virtue of 
(I& (2K) (see [14, 151) these sets are non-empty compact subsets of C,. 

By the results of [7, 131, the theorem will be proved if we can show that differential inequalities (2.7) 
and (2.8) are equivalent respectively to the following inequalities 

sup min [cp(r, x*k[~lrl) - q(gO)l s 0 
(gO.r.4) -r’[.l 

inf maxlcp(t. x,[rJ.lrl) - cp(g”)l 23 0 
Q.LP) %[.I 

(2.11) 

(2.12) 

where 

go = (P, xO[r,[~lPI> E G, re [P,Tl, PE P, 9EQ 

a.1 E X’(g? 9lF’(.)h x*[.l E X*(gO* P1F.C.)) 

These inequalities define non-local stability properties of the functional cp with respect to 
characteristic differential inclusions (2.9) and (2.10). 

We will prove that (2.7) and (2.11) are equivalent. 

Proofofrhe implication (2.11) * (2.7). Let go = (f’, x’[t.[e]t’]) E G, to < T and q E Q. Put 

rjm)=ro+i(T-rO)lfn, i=O,l,..., m; m=l,2 ,... 

By condition (2.11) there are functions xc’[.] such that 

x&),‘[q E X’(gO, 9 I F*(.)). x@‘[.l E X*(7!!/, ~~,?&~~l~j!~l,q I F’c.1) 

cp( 7)“’ , x$‘[r,[.]fj”‘]) s cp(%j_“:, _~~,?{~)l,[r,[.]$_“/]), i = 1. . . ., m 

Put xcm,[.] = xEzi[.]. It follows from (2.13) that xcm,[.] E X’ (go, q[F’(.)) and 

(2.13) 

cp(rj”’ , xC,)[r,[.]r~*’ ]) s cp(gO). i = 0, 1, . . ., m (2.14) 

Consider the sequence of functionsx(,)[.] (m = 1,2, . . .). Since X‘ (go, q[F*(.)) is a compact subset 
of C,, we may assume that this sequence is uniformly rojnvTrynt to a functionx*[.] E X’ (go, q/F*(.)). 
Let r E [r’, T], g’ = (r, x*[tJs]r]), z,, = T,Jr) = max {z/m I T? s r}, g, = (TV, x~~,[~,[~]T,,,]). Then (see 
(1.1)) p(gm,g*) -j 0 as m + 03 and (see (2.14)) cp(g,]) c cp(g’) (m = 1, 2, . .). Since cp is a continuous 
functional, this implies the inequality 

(90, ~‘[~.[~lrl) s cp(g”L r E [r”, T] 

Since the multivalued mapping g k F*(g, q) is continuous and the function x’[.] is Lipschitzian in 
[r’, T], it follows that for any E > 0 a ZO(s) E (0, T-r’] exists such that, for all r E [to, to + ho(&)], we 
have the inclusion relation F’(t, x*[r,[.]r], q) C [F*(g’, q)]‘. Take yJ*] E Q(t” + So(&), x*[t,[.]r’ + aO(&)], 
F*(g’, q), E). Then, by (1.4) the aforementioned properties of the functionx*[.] and the choice of 80(s), 
we have 

~~1.1 E R(gO, F*(gO, 9), ~1. [cp(tO +6, yeM.ltO +W--cp(g”W s 0 

6 E (09 QWI. &>O 
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whence we conclude, by (1.3) and (1.5), that 

d-cp(gO I F*(gO, 9)) s li;LsoUpa-cp(go I r,[d) s 0 

This completes the proof of the implication (2.11) * (2.7). 

Proofofthe implication (2.7) =a (2.11). To prove this implication it will suffice to show that (2.7) implies 
the inequality 

sup minlcp(t, -dt,[.ltl) - cp(s”)l s 0 
(g0.r*9.P) It.1 

(2.15) 

(go = (to, xO[t*[.]tO]) E G, t E [to, Tl, q E Q> P > 0. xi.1 E X;(g”, q I F’(.))) 

where X;(g”, qlF*(-)) is the set of solutions, issuing from go, of the differential inclusion dr[t]/dt E 

[F’(t, x[t*[.ltl, s)]“. 
Indeed, if inequality (2.15) holds, then for any go = (tO,xO[t,[.]tO]) E G, to < T, t E [to, T], q E Q, and 

a sequence pi 10 (i = 1,2, . . .), a sequence of functions _$,[.I E X&O, qlF’(.)) exists such that 

00, x(:)[t*[~ltl) d q(gO) (i = L2, . . .> (2.16) 

Since the multivalued mappingF*(.) satisfies conditions (lK) and (2~), we can show that this sequence 
has a uniformly convergent subsequence, whose limit isx(;[.]X*(g”, qlF’(.)). By (2.16), the functionxc[.] 
will satisfy the inequality 

Thus, we conclude that (2.11) follows from (2.15). 
To prove inequality (2.15) we assume the opposite, that is, a > 0, u > 0, to < T,g” = (t”,xo[t.[a]tO]) 

E G, t’ E (to, T], and q E Q exist such that 

min 
x~~l~X;(g0,91f*(~)) 

cp(t’,x[t*[~lt’I)>cp(gO)+a (2.17) 

Put 

PO) = cp(g9 + a(2 - tO)/(t* - to), (2.18) 

Since P(t’) = cp(g’), it follows that zo Z= to. It follows from (2.17) that z. < t’. The functional 
cp: G l+ R is continuous and the set X;(g”, q/F*(.)) is a non-empty compact subset of C.. Therefore, 
the supremum in (2.18) is achieved and a function xo[.] exists such that 

xor.1 E x&z”. 4 I F*(.)) (2.19) 

Wo* xo[t*[~l~ol) d P<%> (2.20) 

Put go = (zo, xo[ta[.]To]). By condition (2.7), we have 

~cp(goF*(go~ 4)) c cl (2.21) 

Taking into consideration the continuity of the multivalued mapping g I+ F*(g, q) and definition (1.5) 
of the lower derivative in a multivalued direction, we deduce from (2.21) that 

O<&~pL!, yr.1 E !&To9 F’(go qh El, 0<6<t’-70 (2.22) 

exist for which the following relations hold 
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F&h (7) c [F’(& Y [~,[~l~l~ 41”* t E ho. zo + 61 (2.23) 

(P@o + 6. Y[t*[.l~o + 61) - cp(go) d fmf - P) (2.24) 

Let x’[.] E X;(zo + 6, Y[~.[~]T~ + 61, qlF*(-)). It then follows from (2.19), (2.22) and (2.23), since 
z. E [to, t’), that 

x’1.1 E x; (go. 4 I 0-N (2.25) 

and, taking into consideration thatx’[t,[.]zo + 61 =y[t*[.]zo + 61, we obtain from (2.18), (2.20) and (2.24) 

cp@o + 6, ~‘[~*[~I~0 + 61) Q Peel + 6) (2.26) 

Since 6 > 0, relations (2.25) and (2.26) contradict definition (2.18) of the number ZO. This contradiction 
completes the proof of inequality (2.15) and hence also that of the implication (2.7) * (2.11). 

Thus, differential inequality (2.7) is equivalent to the stability property (2.11). The proof that (2.8) 
and (2.12) are equivalent is analogous. The theorem is proved. 

We will discuss a few special cases. We first observe that at points g where the functional cp is ci- 
differentiable, the pair of inequalities (2.7) and (2.8) is equivalent to Eq. (2.3). This follows from 
Proposition 1 and condition (3K) imposed on the characteristic complexes IQ, F’(a)} E K,(H) and 
{Z’, F,(a)} E K:(H). Th us, at points where it is ci-differentiable, the value functional satisfies Eq. (2.3). 
Together with boundary condition (2.5), this, in general, only necessary property is sufficient in case 
the value is ci-smooth. However, it is extremely rare that the value functional is ci-smooth. Most often, 
it turns out to be piecewise ci-smooth or expressible in the form (1.15) (see, e.g., [3,5-71). The following 
corollary of Theorem 1 and Propositions 2,3 gives stability criteria for such functionals which are fairly 
easy to verify. 

Corollary 1. A piecewise ci-smooth functional (1.10) (respectively, a functional expressible in the form 
(1.15)) is the value functional of a differential game (2.1), (2.2) if and only if it satisfies condition (2.5) 
and, for all g = t, x[t*[.]t]) E G, t < T, the inequalities 

in which &,f) = oo(‘g, 1,f) as defined in (1.12) (respectively, in which x(g, f) = h’(g, f) as defined in 
(1.17)). 

Theorem 1 and Corollary 1 are true for any characteristic complexes {Q, F*(e)) E K:(H), 
{P, F,(.)} E K:(H). In particular, one can always take characteristic complex (2.6). Note that then 
inequalities (2.11) and (2.12), and therefore also (see the proof of Theorem 1) differential inequalities 
(2.7) and (2.8), define the properties of U- and u-stability [l-5], respectively, for the value functional 
of the above differential game. Another universal way to select a characteristic complex is indicated in 
[7,13]. We observe, furthermore, that in specific problems suitable selection of a characteristic complex 
will sometimes considerably simplify verification of the criteria given in Theorem 1 and Corollary 1 for 
the stability of functionals. 
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